由买买提看人间百态

topics

全部话题 - 话题: nutation
(共0页)
v*****r
发帖数: 2325
1
来自主题: Weightlifting版 - 深蹲 必须用专用鞋?
lower back rounding is also called "pelvic nutation"
我查了一下
就是蹲到水平或者past parallel 的时候, 屁股尖开始往膝盖方向收
a little nutation is okay, but excessive nutation is bad for lower back...
i can only squat to parallel without much pelvic nutation, seems that really
have to keep chest up.
my hip joint flexibility is average
r*****8
发帖数: 2560
2
能看懂论文吗?顺着上次的连接,找了一篇:
http://faculty.ifmo.ru/butikov/Applets/Gyroscope.pdf
Precession and nutation of a gyroscope. by Eugene Butikov,
专门讲逆动(nutation)和陀螺转速的关系。大致就是转速足够大,而干扰力比较小,
可以想成轴向不变。
文章里把下表面看成摩擦力无穷大,等你都看懂了,做一些小调整,就是你说的情况了。
要写一篇论文才能讲清楚的问题,哪有人会在这里给你详细讲解。
s*****c
发帖数: 753
3
来自主题: History版 - 二至测影 与 地轴角度
I guess you read the wiki, but please pay attention to the unit.
章动的主要项目来自于月球交点的退行,两者有相同的周期,都是6798天(18.6年),
在黄道上的黄经章动分量是17.24",垂直于黄道的斜章动是9.21"。另一个较明显的周
期是183天(0.5年),章动分量分别是1.3"和0.6"。有趣的是,周期在5.5至6798天之间
,变动幅度大于0.0001"(目前测量能力能达到的数值)的项目,似乎都避开了34.8至91
天的范围。因此,这就成为章动的长周期项和短周期项的分界,长周期项会在年历中提
及并算出供参考,短周期项就只能从及时的短期预报中查表来做即时的修正。
Note the unit is ", not O (degree). 1 degree = 60' (minutes of arc) and 1'
= 60" (second of arc).
So the maximum Nutation of 17.24"=0.0048 degree.
g**G
发帖数: 767
4
你一开始声明了一个string hello, 然后声明了o,这个o是一个object的引用,这个引
用指向hello这个string
然后调用mutate,传进去的其实是o这个引用地址的一个copy
你无论在nutate里如何操作这个引用地址,函数外的o的引用还是不会变,始终指向
hello
你没法通过函数改这个
因为string是immutable的
如果o指向的不是string是一个你自定义的类
那么你在mutate里改o本身的内容,是可以反映出来的
o**a
发帖数: 86
5
来自主题: Chemistry版 - 核磁问题求教
first you can get the 90 deg pulse width at your desired spin lock level.
(spink lock level in hz, the nutation freq)
pw90sl = 1/(4*tpwr_sl) Note 90 deg takes 1/4 of a full circle.
Then use the following equation to get spin lock power in dB
tpwr - 20.0*log10(pw90sl/pw90)
tpwr_sl: spin lock power in hz
tpwr: regular hard pulse power in dB
pw90: regular 90 deg pulse width
Make sure you understand what you are doing. Be very careful with spin lock.
It's one of the few things that can smoke the pro
o**a
发帖数: 86
6
来自主题: Mathematics版 - a question on probability density (转载)
【 以下文字转载自 Physics 讨论区 】
发信人: ouba (comfortably numb), 信区: Physics
标 题: a question on probability density
发信站: BBS 未名空间站 (Thu Feb 25 12:26:21 2010, 美东)
Folks, thanks for your time first!
function f = x.cos(a)**2 + y.cos(b)**2 + z.cos(c)**2
I know x > y > z. a, b, c are the angles between a vector and x, y, z axes
of a cartesian coordinate respectively.
If written in nutation and azimuthal angles,
f = x.sin(theta)**2.cos(phi)**2 + y.sin(theta)**2.sin(phi)**2 + z.cos(theta)
**2.
This vector is und
o**a
发帖数: 86
7
来自主题: Physics版 - a question on probability density
Folks, thanks for your time first!
function f = x.cos(a)**2 + y.cos(b)**2 + z.cos(c)**2
I know x > y > z. a, b, c are the angles between a vector and x, y, z axes
of a cartesian coordinate respectively.
If written in nutation and azimuthal angles,
f = x.sin(theta)**2.cos(phi)**2 + y.sin(theta)**2.sin(phi)**2 + z.cos(theta)
**2.
This vector is undergoing random re-orientation, i.e, the probability
density at (theta, phi) position is 1/(4pi)*sin(theta).
It is easy to see that z <= f <= x. Is th
(共0页)