由买买提看人间百态

topics

全部话题 - 话题: heeh
首页 上页 1 2 (共2页)
st
发帖数: 1685
1
I knew that his head got chopped off in the movie, but I didnot
recognize him. heeh.
l**g
发帖数: 2859
2
来自主题: WaterWorld版 - 开车时碰到有人喊Chinese Shit
Take easy. In any country, you can meet very rude people. Don't be too
sensitive to racial difference.
In China, I guess you may have met a guy who yelled at you "XX(the name of a
place)Lao, Cao Ni Da Ye".
heeh....
k**********4
发帖数: 16092
3
来自主题: WaterWorld版 - This is not it
heehe
t**a
发帖数: 675
4
来自主题: Memory版 - 周末去看花
heeh.这个好办,参看那里野花索引里sanny的帖子就好了,哈哈
突然想起,有一次坐老板的车,他特详细地给我介绍了一种我们实验室附近的紫花,满
树的紫色,非常漂亮。后来我还专门查了wiki,不过没过几天就想不起名字了。哎,年
纪大了,
所以现在我干脆不记了,生活已经不容易了,不能太push自己了。赫赫
A***a
发帖数: 1647
5
来自主题: Memory版 - 找不痛快
heeh
A***a
发帖数: 1647
T*******e
发帖数: 6425
7
来自主题: Memory版 - 悄悄的问:哪有包子啊??
heeh,feel better...
b****q
发帖数: 24
8
NTU. singapore not bad, just like Shanghai,heeh
b***k
发帖数: 312
9
来自主题: TongJi版 - Where is brisk, lxj and hegel?
I seldom came this bbs leh, normally once per week.
no time at all, so busy....
no sunshine here, only rains and rains, faint. heehe
a******p
发帖数: 282
10
来自主题: XJTU版 - jumpgate
heeh,
我一周没有来,
不是我不想来,
实在没有机会呀。
a*********a
发帖数: 2607
11
来自主题: Henan版 - 烩面真的那么好吃么?
嗯,真的~~ heeh
f*****x
发帖数: 545
12
heeh, similar feelling.
M****m
发帖数: 2142
13
来自主题: Xibei版 - 趁人多,炫新车!
this one is good, heeh
a*******g
发帖数: 4872
14
来自主题: Zhejiang版 - 早上好啊
where are you? heeh
a*******g
发帖数: 4872
15
来自主题: Zhejiang版 - 今天受刺激了!!!
north euro? heeh
a*******g
发帖数: 4872
16
来自主题: Zhejiang版 - 今天受刺激了!!!
heeh, in HZ now..
I visited Paris and Lyon, the first feeling was that daytime was toooo short
(maybe because of winter?
a*******g
发帖数: 4872
17
来自主题: Zhejiang版 - Re: 我也忍不住的想起杭州了
heeh, long long story in my childhood
a*******g
发帖数: 4872
18
来自主题: Zhejiang版 - way too good
heeh, I also had the WII dance disk and played a lot before the TV when I wa
s in school
a*******g
发帖数: 4872
19
来自主题: Zhejiang版 - 去太子湾公园逛了逛
heeh, where did you leave Hangzhou?
In my memory, it was open when I was a little child.
a*****p
发帖数: 1285
20
thank you very much. i was thinking of the Spring reference. and I saw you
guys' posts. yea, i am going for in action now. heeh

the
a***o
发帖数: 969
21
heeh,
co努力
r******n
发帖数: 149
22
来自主题: Mathematics版 - question about limit
I*e^t =e^t if t is a matrix
heeh
b***k
发帖数: 2673
23
来自主题: Quant版 - [合集] 证明题(级数求和)
☆─────────────────────────────────────☆
blook (布鲁克) 于 (Tue Mar 11 15:47:23 2008) 提到:
sum(k=1..n) k^3 = (sum k)^2 =( n(n+1)/2 )^2
TFC的书中说前一个等式可以几何法证明,是怎么构造的?
☆─────────────────────────────────────☆
redlemon (heehe) 于 (Tue Mar 11 16:18:12 2008) 提到:
因为
k^3= k^2 + k^2(k-1)= k^2 + k*(k*(k-1))/2 + k*(k*(k-1))/2
= k^2 + 2k*(sum k )
所以
sum_1^n k^3= sum_1^n(k^2 +2k*(sumk)))= (sum k)^2
几何解释这个式子就是说一个底面为 (sum_1^n k)\times (sum_1^n k), 高为1
的长方体体积等于 n个 边长为k 的立方体体积(这些立方体可以排列在刚才那个底
d**w
发帖数: 14889
m**k
发帖数: 18660
25
人家也弹钢琴玩lego阿。heeh
e*a
发帖数: 749
26
来自主题: _D_SupportGroup版 - 谁安慰我一下
heeh
我想,要是遇见一个能让我笑的男生就好了
N*****a
发帖数: 2630
27
来自主题: _PerfectMoms版 - 同学们,花生版
spt,heeh
首页 上页 1 2 (共2页)