g****t 发帖数: 31659 | 1 数学证明就是一个句子,结尾是A=1
A是要证明的命题。中间的步骤是逻辑规则和公理的套用。
Rename,apply等等。
本质的麻烦是数学定理有自己的内部表示。
可以用素数的指数来一一对应的表示数学定理。
这就是Godel coding。
停机问题的困难是类似的。
从实用的角度来看。把真值表或者
整数多维数组弄弄好,是很有意义的软件项目。
: 数学定理自动证明,缺少的是一个棋盘。
: 没有棋盘,问题就是开放性的,下一步有无穷种可能,比如辅助线
: 有无穷种添法,就没法玩了。
: reasoning
|
|
m*****n 发帖数: 3575 | 2 想问一下,“你永远无法证明一个东西不存在”这句话正确吗?从逻辑上说?
Godel's Theorem |
|
t**********r 发帖数: 256 | 3 包含数论公理的公理系统才不完备。
他博士论文先证明的是某简单系统的完备性。
所以大家都说,上帝创造了自然数。
有理数,无理数什么的都是人造的。
Godel确实写过一个上帝存在的证明。只有几行,非常难懂。
他还证明过,美国宪法从逻辑上不能排除出现独裁者的可能。 |
|
t**********r 发帖数: 256 | 4 扯淡,Godel什么时候说过费马大定理不可判定了? |
|
s***t 发帖数: 113 | 5 Godel's theorem suggests Fermat's last theorem may not be provable. |
|
|
j******w 发帖数: 690 | 7 这个会有很多技术上的问题(比如如何定义这种集合的基数).
实际上现在似乎没有人认为"the world is ill-founded".
也就是不会有这种集合...\in x_{n+1}\in x_n\in....\in x_1.
大家都倾向于认为世界是由一些原子构成然后生成所有集合.
不过非标准分析研究这类集合,
但似乎人们一致认为这仅仅是一项工具.
比如按照Godel不完备性定理,
肯定有一个世界里面有ZFC是不协调的证明,
但这个世界肯定(如果你承认ZFC是协调的)是非标准的(也就是存在上面所说的ill-
founded chain).
这也使得人们不太关心这种病态世界.
但也许有多得就得有所失,
也许哪一天物理学家就证明这个世界是ill-founded.
Who knows. |
|
c*******v 发帖数: 2599 | 8 你看过Godel 60年代数学会的一个讲演,
哲学之光下的未来数学 (大致是这个名字)么?
我不太懂集合论,不过首先我的朴素想法是
"A is an element of A"这种东西是可定义的,就跟历史上无理数,虚数什么一样的
如果只是简单的规定它不存在或者trivial,我是觉得比较牵强。只是也许
我们还没遇到非和它打交道不可的境地。
其次就是和物理现实有关的一些想法
没错如果我们认为客观上"世界是由一些原子构成然后生成所有集合"的
那就没有考虑这种病态问题的意义
不过我觉得根本原因是似乎没有一个客观上物理世界的东西对应到这种问题
而这种问题似乎只存在于我们的头脑里,比如"我想的属于我想的"
所以我猜测如果将来的某一天人类对于真正的智能,或者生命研究到一个深度
应该会需要一个和以前physics-based的数学不一样的数学
而智能世界和物理世界如果说有不同,或者说认识论上的不同我觉得是前面这
个对象我们是不可能得到一个终极认识的,比如说"A is an element of A"这样的
但是如果我们不去强求分析它,而只是把它包括进来
像你说的去定义这类集合的基数,运算,拓扑什么 |
|
N***l 发帖数: 52 | 9 声明这个例子是GEB这本书上给出的,这本书很有意思,推荐看一看
Godel Escher and Bach, the Eternal Golden Braid
79年普利策获奖作品。
我理解我们所说的公理体系。但是好像推导中implicitly用到一些
假设。
比如说
条件1.if A is true, then B is true
条件2.A is true
我们则得出结论B is true
仔细想想从1和2得出结论的过程实际上是我们假设都承认的,并没有得到证实的。
这也许在更高层次上算做一个Meta axiom。
哎,我说不清楚,大家当我胡说八道好了。 |
|
e*******y 发帖数: 73 | 10 These are Steve Gelbart's family movies of when his father, Abe Gelbart,
took them to Princeton in 1947 and met with many scientific luminaries.
In order of appearance:
opening scene: Atle Selberg at left, Carl Ludwig Siegel at right (the middle
two people are unknown)
Around 33 seconds: Einstein
1:06 Godel on left
1:25 Selberg at the right, his wife Heddy in the middle
1:41 Paul Erdos (left) and Hermann Weyl (right)
3:01 Paul Dirac at right, and his student Harish-Chandra at left
And in the las |
|
n*****i 发帖数: 64 | 11 侮辱?你有啥资格说hilbert不如poincare??Hilbert好歹也算开启了现代代数数论,集
合论,学生中有Godel,Weyl之类的,另外代数几何鼻祖之一的wale不知道算不算他学生
,反正他的风格我看类似Hilbert不似Poincare,代数几何现在怎么说也是占据了主流数
学的半壁江山了。【 在 Corinthian (Diogenes门下一走狗) 的大作中提到: 】 |
|
f*********g 发帖数: 632 | 12 啥时候Godel成了Hilbert的学生?好歹也去查查再说 |
|
L*****s 发帖数: 6046 | 13 http://www.logic-china.info/index.php?q=node/227
我所知道的华罗庚与陈省身--------徐利治先生访谈录
由 beyond 于 周一, 2007/06/11 - 18:33 提交。
* 逻辑人生
我所知道的华罗庚与陈省身--------徐利治先生访谈录
华罗庚与陈省身在二十世纪三四十年代中国数学发展的一个活跃时期,开始崭露头角,
并做出了世界水平的工作。新中国成立前后,他们在时局变迁的背景下分别做出了回国
与去国的不同抉择。1948年12月,时任中央研究院数学研究所代理所长的陈省身举家赴
美。1950年3月,华罗庚由美回国,不久被任命为中国科学院数学研究所所长。
徐利治在西南联合大学(以下简称“西南联大”)求学时,华罗庚与陈省身已是西
南联大闻名遐迩的年轻教授。他们对徐利治都十分赏识。徐利治1945年在西南联大毕业
后,华罗庚推荐他留清华大学数学系任他的助教。徐利治1949年赴英留学,陈省身是他
的推荐人之一(另一位推荐人是著名数学家许宝騄)。在英国留学期间,他与华罗庚、
陈省身往复通信。在这篇访谈中,徐利治先生回忆了他对华罗庚... 阅读全帖 |
|
l******r 发帖数: 18699 | 14 不过华罗庚能够放弃uiuc回中国,
属实不易
http://www.logic-china.info/index.php?q=node/227
我所知道的华罗庚与陈省身--------徐利治先生访谈录
由 beyond 于 周一, 2007/06/11 - 18:33 提交。
* 逻辑人生
我所知道的华罗庚与陈省身--------徐利治先生访谈录
华罗庚与陈省身在二十世纪三四十年代中国数学发展的一个活跃时期,开始崭露头角,
并做出了世界水平的工作。新中国成立前后,他们在时局变迁的背景下分别做出了回国
与去国的不同抉择。1948年12月,时任中央研究院数学研究所代理所长的陈省身举家赴
美。1950年3月,华罗庚由美回国,不久被任命为中国科学院数学研究所所长。
徐利治在西南联合大学(以下简称“西南联大”)求学时,华罗庚与陈省身已是西
南联大闻名遐迩的年轻教授。他们对徐利治都十分赏识。徐利治1945年在西南联大毕业
后,华罗庚推荐他留清华大学数学系任他的助教。徐利治1949年赴英留学,陈省身是他
的推荐人之一(另一位推荐人是著名数学家许宝騄)。在英国留学期间,他与华罗庚、
陈省身往... 阅读全帖 |
|
L******9 发帖数: 78 | 15 hi, Guys,
What's the point to argue in this way?
guvest:
what's your logic to draw a conclusion my comment came out only based on
Wiki?
If I just comment based on wiki what's your response to my comment
" For example, this field, combined with point of view
from computational complexity theory may give some new views to fundation of
math."
Does this comment sound to you like a person can do give only know
something form Wiki?
What's your understanding to my comment on the comparision to ... 阅读全帖 |
|
a*********3 发帖数: 660 | 16 弗里曼•戴森 (Freeman Dyson)1923年12月15日出生,美籍英裔数学物理学家
,普林斯顿高等研究院自然科学学院荣誉退休教授。
戴森早年在剑桥大学追随著名的数学家G.H.哈代研究数学,二战结束后来到美国康奈尔
大学,跟随汉斯•贝特教授。他证明了施温格和朝永振一郎发展的变分法方法和
费曼的路径积分法的等价性,为量子电动力学的建立做出了决定性的贡献。1951年他任
康奈尔大学教授,1953年后一直任普林斯顿高等研究院教授。
《鸟和青蛙》(Birds and Frogs)是戴森应邀为美国数学会爱因斯坦讲座所起草的一篇
演讲稿,该演讲计划于2008年10月举行,但因故被取消。这篇文章全文发表于2009年2
月出版的《美国数学会志》(NOTICES OF THE AMS, VOLUME56, Number 2)。
有些数学家是鸟,其他的则是青蛙。鸟翱翔在高高的天空,俯瞰延伸至遥远地平线的广
袤的数学远景。他们喜欢那些统一我们思想、并将不同领域的诸多问题整合起来的概念
。青蛙生活在天空下的泥地里,只看到周围生长的花儿。他们乐于探索特定问题的细节
,一次只解决一... 阅读全帖 |
|
m********6 发帖数: 1283 | 17 【 以下文字转载自 Military 讨论区 】
发信人: majia12346 (我们灌水好辛苦), 信区: Military
标 题: 人均定理发现率..最重要的100个数学定理,中国人发现了几个? 1个?
发信站: BBS 未名空间站 (Tue Aug 28 05:24:13 2012, 美东)
人均定理发现率
最重要的100个数学定理,中国人发现了几个? 1个?
1 根号2的无理性
毕达哥拉斯 和他的学派 公元前500年
2 代数基本定理
卡尔•弗里德里希•高斯(Karl Frederich Gauss)
1799
3 实数集的不可数
康托(Georg Cantor)
1867
4 勾股定理
毕达哥拉斯 和他的学派
公元前500 年
5 素数定理
阿达玛(Jacques Hadamard) 和普森Charles-Jean de la Vallee Poussin(分别地)
1896
6 哥德尔不完全性定理
哥德尔(Kurt Godel)
1931
7 二次互反律
高斯(Karl Frederich Gau... 阅读全帖 |
|
s*****V 发帖数: 21731 | 18 数学的内容、方法和意义
今天要讲的是数学的内容、方法和意义,这原是苏联人写的一本书的书名,和今天的演
讲内容借过来作为演讲的名称。
今天是北大百周年校庆,五四运动便是北大学生发动的。作为演讲的引子,让我们先简
略地回顾一下“五四”前后中西文化之争。十九世纪中业以后,中国对西文科技的认识
,是“船竖炮利”,在屡次战争失利后,张之洞提出了“中学为体、西学为用”的主张
,即以传统儒家精神为主,加入西方的技术。到了五四运动前后便有了科玄论战。以梁
漱溟为主的一派以东方精神文明为上,捍卫儒学,以为西方文明强调用理性和知识去征
服自然,缺乏生命之道,人变成机械的奴隶;而中国文化自适自足,行其中道,必能发
扬光大。其时正值第一次世界大战结束,西方哲学家罗素等对西方物质文明深恶痛绝,
也主张向东方学习。另一派以胡适为首者则持相反意见,他们以为在知识领域内科学万
能,人生观由科学方法统驭,未经批判及逻辑研究的,皆不能成为知识。
科玄论战最终不了了之,并无定论。两派对近代基本科学皆无深究,也不收集数据,理
论无法严格推导,最后变得空泛。其实这便是中国传统文化之一特点。一方面极抽象,
有质而无量,儒道皆云天... 阅读全帖 |
|
g****t 发帖数: 31659 | 19 他说的东西,还真不一定全无道理.
ZFC真不一定是一致的.大家都相信其一致性而已.
(可能有一部分人相信,就算出了新悖论,
绝大多数数学结果还是不会受影响)
而且按照Godel定理,这个情况还没办法进行本质性的改善.
前段时间stackoverflow好像还有人谣传,发现ZFC不一致了.
(也就是说有一个0=1之类的东西,两边都是可以用数学证明的.)
你還指出他的錯誤 你真是太牛了 |
|
p******e 发帖数: 1151 | 20 数学家的最黄金年代应该已经过去了。。。
17-20世纪初估计是他们最辉煌的时代, 从Newton等人开始, 确实取代了哲学精英指
导世界的地位。
譬如空间的相对性, 就是伟大的哲学想法, 但是是严格的数学定理得出来的结论(
Gauss-Riemann)。 对后世的影响应该说不可估量。
19-20世纪的Hilbert还能讲:物理学对物理学家太难了之类的豪言。。。
现在估计物理学家会讲: 数学(最少和超玄相关的数学)对数学家太难了。。。
数学家最后几个改变世界的想法在20世纪:计算机, game theory, 控制论, 还有
Godel不完备性
(当然数学本身伟大的想法就太多了, 不过大多数都是自娱自乐)
不知道21世纪如何。。。
如果有顶级数学家真懂生物或者金融, 前途估计不可估量 |
|
j*********n 发帖数: 4116 | 21 "本世紀初 Hilbert 便以為 任何數學都能用一套完整的公理推導出所有 的命題。 但
好景不常, Godel在 1931 年發表 了著名的論文“「數學原理」 中的形式上不可
斷定的命題及有關系統 I”。 證明了包含著通 常邏輯和數論的一個系統的無矛盾性是
不能 確立的。 這表示 Hilbert 的想法並非是全面 的, 也表示科學不可能是萬能的。"
万分感谢! |
|
j*d 发帖数: 96 | 22 楼主说的应该是“大数学家”。
和其他各种领域一样,“大”数学家能够see the big picture,发现重要的问题,值
得研究的问题,提出革命性的idea,引领学科方向。比如希尔伯特1900年提出的一系列
数学界未解决的问题,就引出了Godel的证明,然后Turing, Von Neumann受启发 然后
就有了计算机。 |
|
j*d 发帖数: 96 | 23 看了Mathematics: Its Content, Methods and Meaning的目录和第一章。 翻译居然
把原著里对数学本质的分析的两段给删了! 说什么前面有提到过,就不翻译了。。。
太过分了
另外这本书没有专门讲Set theory, mathematical logic。 出这部书的时候Godel的不
完备性定理都出来20多年了吧。十分失望。
不过他们的确把主流数学的各个分支、联系讲了,条理清楚。 |
|
t******a 发帖数: 140 | 24 要说Harvard也算是钱江的一桩夙愿了。他大二刚申请transfer那会,每天中午在学一
吃饭,左手一部《孟子》,右手一把勺子,嘴里念念有词,Harvard快来……我问,你
现在还有心情看《孟子》?他答,没办法,哲学系一哥们托他写稿子,平时没空,只好
利用饭前便后了。我于是想起他大一时候写了篇论文送哲学系参评,得过二等奖的。不
光哲学,文史也巨牛。一次他去听中文系的课,末了和教授探讨一个问题,满嘴经籍,
周围中文系同仁个个听得目瞪口呆,那教授见状慨叹中文系今不如昔。偶然一次我和他
谈起我们家楼里住了些大牛,报出金岳霖卞之琳钱钟书夏鼐,他就激动得瞳孔紧缩,浑
身抽搐,迫不及待地大声问道:叶秀山在不在?贺麟在不在?沈有鼎呢?我一一据实回
答,贺麟在三单元,叶秀山原来在平房后来搬出去了,还有那个沈什么来着的?我没听
说过。他惊讶地问,沈有鼎!沈有鼎你没听说过?我说,没听说过,不过四单元还有一
个搞哲学的叫周礼全。他立刻纠正说,周先生是搞数理逻辑的。我说,哦,他给我讲过
理发师悖论,别的我就不知道了。他从椅子上弹起三丈多高,连连大叫:哇!你太幸福
了!竟然有机会聆听周先生教诲!太幸福了!半天... 阅读全帖 |
|
t******a 发帖数: 140 | 25 要说Harvard也算是钱江的一桩夙愿了。他大二刚申请transfer那会,每天中午在学一
吃饭,左手一部《孟子》,右手一把勺子,嘴里念念有词,Harvard快来……我问,你
现在还有心情看《孟子》?他答,没办法,哲学系一哥们托他写稿子,平时没空,只好
利用饭前便后了。我于是想起他大一时候写了篇论文送哲学系参评,得过二等奖的。不
光哲学,文史也巨牛。一次他去听中文系的课,末了和教授探讨一个问题,满嘴经籍,
周围中文系同仁个个听得目瞪口呆,那教授见状慨叹中文系今不如昔。偶然一次我和他
谈起我们家楼里住了些大牛,报出金岳霖卞之琳钱钟书夏鼐,他就激动得瞳孔紧缩,浑
身抽搐,迫不及待地大声问道:叶秀山在不在?贺麟在不在?沈有鼎呢?我一一据实回
答,贺麟在三单元,叶秀山原来在平房后来搬出去了,还有那个沈什么来着的?我没听
说过。他惊讶地问,沈有鼎!沈有鼎你没听说过?我说,没听说过,不过四单元还有一
个搞哲学的叫周礼全。他立刻纠正说,周先生是搞数理逻辑的。我说,哦,他给我讲过
理发师悖论,别的我就不知道了。他从椅子上弹起三丈多高,连连大叫:哇!你太幸福
了!竟然有机会聆听周先生教诲!太幸福了!半天... 阅读全帖 |
|
f*********g 发帖数: 632 | 26 果然科盲一堆,Godel是,今天又看到一个。
看来不光我是科盲。
这问题真的值得好好研究。
On the effective computability of non-recursive functions via Malament-
Hogarth space-times (2002)
by G Etesi, I Németi
Venue: International Journal of Theoretical Physics |
|
e*******n 发帖数: 4912 | 27 1.在这个系列里我打算写一些我在各种文章和书中看到的八卦
希望能博大家一笑
有一次littlewood问hardy,为什么他每次到一个旅馆就会把镜子用毛巾盖起来?
回答是:因为他长得太丑了
2.Hadamard,Jacques去意大利Bologna开1928年国际数学家大会,期间要坐火车去一个地
方
车厢里有很多人在聊天,他觉得十分累,就出了道困难的数学题,众人思考这道题,
车厢里马上安静下来了,于是Hadamard就可以睡觉了
3.Bourbaki是一个法国数学家的集体代名词
Bourbaki的第一篇文章发表在comptes Rendus(法国科学院的一个杂志)上
在1949年Journal of symbolic logic上的一篇文章
"Foundations of mathematics for the working mathematican"
中,Bourbaki教授的地址是University of Nancago
一个杜撰的地址,分别是Nancy和Chicago(weil在那里)前后组合
1940年,Boas,Ralph(MR的主编)曾经在Encyclopa... 阅读全帖 |
|
|
u**x 发帖数: 45 | 29 This is just like the Fifth Axiom in Euclid Geometry. You can go with
it, you can also go with the counter-statement of it.
Godel first showed that both the Axiom of Choice and the continuum hypothesis
are consistent with the standard mathematics*, but late on others showed
that the ~(Continuum hypothesis) is also consistent with standard mathematics.
This means its "independence".
The standard mathematics is the reference point here, which is the standard
set theory + logic(first order).
Axiom |
|
w********d 发帖数: 13 | 30 The book Godel, Escher and Bach has a complete tranlation in about three years
ago. I bought one, it costed about 50 yuan. It is supposed to be a better
translation. And its subtitle is changed from 一条永恒的金带 to
集(G)异(E)壁(B)之大成(?)
since 一条永恒的金带 was said to be confusing in Chinese. The other day,
I even found it in online bookstore Hanlin
BTW, even the Chinese language is not easy to understand bad translation?),
I guess it will be pretty hard for us to read it in English. |
|
u***************r 发帖数: 11227 | 31 【 在 blaze (blaze) 的大作中提到: 】
I don't see how this article explains any of Godel's
Incompleteness Theorem (GIT for short). GIT has
nothing to do with cardinality of N, Q and R.
GIT says that there exists true but unprovable "first-order
logic" (or predicate logic) sentences in the structure
(N,0,S,+,*), where N is set of natural numbers, 0 is zero,
S is successor function, + and * are addition and multiplication.
This unprovable sentence just says something like "I am unprovable."
The contributi |
|
m*********k 发帖数: 10521 | 32 qrj2009
我从北航毕业后的工作分配 BUAA
friediceman
公司今天财源了 Carolinas
rinse
西方的租售比 不能往东方社会套 ChinaNews
love story Dreamer
goooodluck
广大jms一定要看看, 这样的男人才能嫁 Family
doli
关于“女强人”的婚姻问题 Family
lunt
跟风开个内双油痘皮日常妆技术帖(缓慢更新) Fashion
sailors
刚刚寄走了EB-1A RFE response, NSC Immigration
Godel
今天的面试经验 JobHunting
littlej
爱你就像爱生命 Literature
lispendens
问一个agent给两个人买同一区房子的问题 Living
lovingkids
爱在何处?纪念一个逝去的生命。 Love
TrueCabbage
中印人口 Memory
W4049
女人,年 |
|
s***h 发帖数: 372 | 33 路德作为改教领袖,圣经自然很熟。路德的《加拉太书注释》可以在这个网址找
http://www.gospelcom.net/eword/comments/galatians/luther/galatians1.htm )
其中有一段题目叫做“人不可因好奇的缘故而去探求上帝的本性”。
(Men Should Not Speculate About the Nature of God) 但他并没有给出具体的经
文解释这个论断。
一般人会认为,虽然“没有人见过神”,也许神的性情是可以由理性推知的,至少
可以根据神的作为来部分了解神。但对于终极真理,并非如希尔伯特所说的“我们
必须知道,我们必将知道”(见Godel不完备定理)。神对摩西说“我是自有永有的”
(I AM WHO I AM)。神在启示里声称自己是万有的起先和终极,其范畴不属於人的可
认知探索范围。人对於神的认识只有来源于神的启示。
圣经上说:“隐密的事是属於耶和华我们的神,惟有明显启示的事是属於我们和我
们的子孙,好叫我们遵行这律法上的一切话”。“将事隐秘、乃神的荣耀.将事察
清、乃君王的荣耀。”作为君王的君王(KING OF K |
|
s***h 发帖数: 372 | 34 作为理论,进化论及宇宙起源谈的是什么大家多半了解。
创世纪里谈到的世界的起源是这样的:
旧约里说:“神说:要有光、就有了光。...”
新约里说:“太初有道、道与神同在、道就是神。 这道太初与神同在。 万物是借
著他造的.凡被造的、没有一样不是借著他造的。 生命在他里头.这生命就是人的
光。”
而创造天地的神启示人的时候是这么说的:
“铺张诸天, 建立地基,造人里面之灵的耶和华。”
“I AM WHO/THAT I AM”
国内研究维特根斯坦多半是因为他很聪明和有很广泛的哲学影响,但是即使对哲学
研究方法并不熟悉的人在驻足他的哲学废墟的时候,会发现他的很大一部分动机和
思想来源和“万物是(神)说有就有的”的相似性。尽管他和罗素先生的努力已经被
Godel的不完备定理所挫败。对於这个故事的结局,信神之人的解释对於中国人来说
似乎比较陌生。当然对於学习数学或计算机专业并了解图灵机理论的人来说,神创
论不仅仅是很自然,而且是很有启发意义。 |
|
j**h 发帖数: 173 | 35
Godel's law is a very powerful antidote to scientifism, which is one of most
dangerous strongholds among Chinese students that cause them not even thinking
about the Christian faith. I hope someone can write about it more
deliberately. |
|
c******n 发帖数: 4965 | 36 am reading it now, as part of the class
almost driven mad
by full pages of greek letters |
|
|
e***e 发帖数: 3872 | 38
偶也不行啊, 读啊读啊读多了就习惯了...
Godel, Escher, Bach: an Eternal Golden Braid, by Douglas Hofstadter
这个的中译本倒是很不错的 |
|