h****1 发帖数: 76 | 1 Frobenius inner product定义为同型矩阵P,G对应元素乘积的总和,记为P:G,
容易看出此值等于trace(P'G)
有一个矩阵G的SVD为G=TDU,则使P:G取得最大的正交矩阵P=TU
如果G为平面上两点集{p1,p2,...,pm},{q1,q2,..,qn}间的距离的方阵,即
G(i,j)=||pi-qj||
则P表达了两点集之间的某种对应关系。
请问是否有对此的一个比较直观的解释? |
|
i*****s 发帖数: 4596 | 2 丘成桐:从明治维新到二战前后中日数学人才培养之比较
序言
在牛顿(1642~1727)和莱布尼茨(1646~1716)发明微积分以后,数学产生了根本性
的变化。在18到19世纪200年间,欧洲人才辈出,在这期间诞生的大数学家不可胜数,
重要的有:尤拉(Euler,1707~1783),高斯(Gauss,1777~1855),阿贝尔(Abel
,1802~1829),黎曼(Riemann,1826~1866),庞卡莱(Poincare,1854~1912)
,希尔伯特(Hilbert,1862~1943),格拉斯曼(Grassmann,1809~1877),傅立叶
(Fourier,1768~1830),伽罗华(Galois,1811~1832),嘉当(E.Cartan,1869
~1951),伯努利(D. Bernoulli,1700~1782),克莱姆(G. Cramer,1704~1752
),克莱罗(A. Clairaut,1713~1765),达朗贝尔(d’Alembert,1717~1783),
兰伯特(J. Lambert,1728~1777),华林(E. Waring,1... 阅读全帖 |
|
i*****s 发帖数: 4596 | 3 序言
在牛顿(1642~1727)和莱布尼茨(1646~1716)发明微积分以后,数学产生了根本性
的变化。在18到19世纪200年间,欧洲人才辈出,在这期间诞生的大数学家不可胜数,
重要的有:尤拉(Euler,1707~1783),高斯(Gauss,1777~1855),阿贝尔(Abel
,1802~1829),黎曼(Riemann,1826~1866),庞卡莱(Poincare,1854~1912)
,希尔伯特(Hilbert,1862~1943),格拉斯曼(Grassmann,1809~1877),傅立叶
(Fourier,1768~1830),伽罗华(Galois,1811~1832),嘉当(E.Cartan,1869
~1951),伯努利(D. Bernoulli,1700~1782),克莱姆(G. Cramer,1704~1752
),克莱罗(A. Clairaut,1713~1765),达朗贝尔(d’Alembert,1717~1783),
兰伯特(J. Lambert,1728~1777),华林(E. Waring,1734~1798),范德蒙德(
Vandermond... 阅读全帖 |
|
w*******e 发帖数: 17 | 4 Louzhu should study some basic ideas of Singular Value Decomposition.
Very often, low-rank matrix factorization means the process of finding a low
-rank matrix to approximate your original matrix.
If you use Frobenius norm to find the best approximation, i.e., minimize
over
|| D -\hat(D) ||_F subject to rank(\hat(D))
then you can get the analytic solution from SVD by simply retaining the top
r singular values (Eckart-Young-Mirsky theorem).
There are many applications based on low-rank matrix... 阅读全帖 |
|
|
c******n 发帖数: 4965 | 6 for the coin thing, I found it, if taking size of input to be log(N),
this is NP-hard.
the "Frobenius coin exchange" problem can be trivially reduced to this one
出hint。
段了。
词在不在这个
dictionary里面
形概率。
少数目
的这些面值的硬币组成一个指定的值N。复杂度是多少? |
|
h********3 发帖数: 2075 | 7 你是说power iteration这个算法会converge吧。
你看看它的矩阵等式。
Perron-Frobenius Theorem: If M is a positive, column stochastic matrix, then:
1 is an eigenvalue of multiplicity one.
1 is the largest eigenvalue: all the other eigenvalues are in modulus
smaller than 1.
the eigenvector corresponding to eigenvalue 1 has all entries positive. In
particular, for the eigenvalue 1 there exists a unique eigenvector with the
sum of its entries equal to 1.
它其实是用largest eigenvector去近
似原来的矩阵,不断拉大largest eigenvector和其他eigenvect... 阅读全帖 |
|
|
l*****e 发帖数: 65 | 9
a=b^2+c^2
if charF=2, then Frobenius map x I-> x^2 is an isomorphism, nothing need to
prove.
If charF!=2, consider the set S={x^2: x\in F}, it contains (F-1)/2+1
elements.since half of non-zero elements is the square of some other element,
and 0 is in S.
Now the set {a-x^2: x\in F} also has (F-1)/2+1 elements, but there are only
(F-1)/2 elements are not in S, so there exists some y^2 st. a-x^2=y^2. done.
Just counting, hehe. |
|
x*****d 发帖数: 427 | 10 Jean-Pierre Serre
Linear Representations of Finite Groups
这个学期很不幸地上了一门群表示论的课。不幸在老师太酷了。
老师水平的确是高,一切都在脑子里,所以有本不依,讲起来
海阔天空。在逃了两节课以后,终于完全地不理解了。
这本教材应该是有限群表示论的经典吧。薄薄一本,给人以
无限希望去读完它,不过读起来真是吭哧吭哧啊。项武义说
Frobenius-Schur学派研究群论的基本方法就是通过一个群的
所有可能的线性表示来探讨群本身的结构,这次我算深刻地
体会到了。这课叫群表示论,实际还是群论,表示完全是工具。
另一本教材是:
Larry C. Grove
Classical groups and Geometric Algebra
Providence, R.I. : American Mathematical Society, c2002
这本书图书馆只有一本,被老师借作教材了,我们只有抄笔记的份。
不过这本书听起来是很牛的,有兴趣的同学可以去查一查。
我自己对表示论本身而不是它在群论中的运用感兴趣,表示论
似乎与物理有着莫大的关 |
|
M*****y 发帖数: 666 | 11 k: x-->x^p on the finite field F_p^n
How to determine the rational canonical form over F_p of k as an F_p-linear
transformation of the n-dimensional F_p-vector space F_p^n
Then how to determine its Jordan normal form
大家帮我看看吧,我只知道这个特征多项式是x^n-1
但是如果要求这两个form,是不是要先找出变换矩阵呢?
我就是找不出来这个变换矩阵呢
请大家赐教,拜谢了!
|
|
f*********g 发帖数: 632 | 12 The Siegel theta function is implemented in Mathematica as SiegelTheta[Omega
, s].
This function was investigated by many of the luminaries of nineteenth
century mathematics, Riemann, Weierstrass, Frobenius, Poincaré. Umemura has
expressed the roots of an arbitrary polynomial in terms of Siegel theta
functions (Mumford 1984).
http://mathworld.wolfram.com/SiegelThetaFunction.html
the |
|
L******9 发帖数: 78 | 13 Mehta M.L. - Random matrices - AP 1991 2ed
COLL 45 - Katz, Sarnak - Random Matrices, Frobenius Eigenvalues, and
Monodromy
An Introduction to Random Matrices Greg W. Anderson |
|
|
x********i 发帖数: 905 | 15 Sarnak Awarded Wolf Prize
Peter Sarnak has been awarded the 2014 Wolf Prize in Mathematics. A
mathematician of extremely broad spectrum and far-reaching vision, Sarnak
has influenced the development of several mathematical fields, often by
uncovering deep and unsuspected connections. "By his insights and his
readiness to share ideas he has inspired the work of students and fellow
researchers in many areas of mathematics," the Wolf Foundation said. Sarnak
is the Eugene Higgins Professor of Mathem... 阅读全帖 |
|
L*m 发帖数: 235 | 16 统计了近十余年来中国大陆高校在四大刊物上的发文,有些是挂名的,但不管如何,还
是都统计了。全名单如下
Annals of Mathematics
A proof of Demailly’s strong openness conjecture
Qi'an Guan(关启安 北京大学) Xiangyu Zhou(周向宇 中科院)
A solution of an L2 extension problem with an optimal estimate and
applications
Qi'an Guan(关启安 北京大学) Xiangyu Zhou(周向宇 中科院)
Construction of Cauchy data of vacuum Einstein field equations evolving to
black holes
Junbin Li(黎俊彬 中山大学) Pin Yu(于品 清华大学)
Special test configuration and K-stability of Fano varieties
Chi Li(李驰 普林斯顿大学 现stony broo... 阅读全帖 |
|
|
J****e 发帖数: 382 | 18 比如说, A是一个matrix
把A写成A=QTP三矩阵的乘积
其中Q,P互逆 (通常要求Q正交)
而T是上(下)三角阵...
这就是matrix factorization.
有jacobi分解, frobenius分解, jacobson分解等.... |
|