由买买提看人间百态

topics

全部话题 - 话题: bionomial
(共0页)
N**B
发帖数: 1190
1
来自主题: Statistics版 - bionomial extreme case
假设从一个bionomial distribution抽了50个samples, 要是结果全是0,则么算p的
confidence interval?记得有这样的文章讨论过,哪位大牛给给名字或者文章?大包子
酬谢!
c*******e
发帖数: 5818
2
来自主题: Basketball版 - 跑题,问个简单概率问题?
我这个肯定不对,5/0.4 是对的,但应该是bionomial
d****n
发帖数: 1637
3
来自主题: Programming版 - 计算组合数C(m,n)
/*only works for small number */
/*die when integer overflow*/
#include
#include
int bico(int n, int k){
int t, i ,c ;
if (k>n) t=n, n=k, k=t;
if (k<0 ) return 0 ;
if (k>(n-k)) k=n-k;
c=1;
for(i=0;i c*=(n-(k-(i+1))) , c/=(i+1);
return c ;
}
int main(int argc, char * argv[] ){
if(argc!=3) return -1;
int c;
c=bico(atoi(argv[1]) , atoi(argv[2]) ) ;
printf("bionomial %d\n", c);
}
d****n
发帖数: 1637
4
来自主题: Programming版 - 计算组合数C(m,n)
/*working with larger numbers but still die */
/**C(80, 20) is okay, which was not ok in previous version**/
#include
#include
#include
float
gammln (float xx)
//Returns the value ln[Ãxx)] for xx > 0.
{
//Internal arithmetic will be done in double precision, a nicety that
//you can omit if five-figure
//accuracy is good enough.
double x, y, tmp, ser;
static double cof[6] = { 76.18009172947146, -86.50532032941677,
24.01409824083091, -1.231739572450155,
... 阅读全帖
d****n
发帖数: 1637
5
来自主题: Programming版 - 计算组合数C(m,n)
/*only works for small number */
/*die when integer overflow*/
#include
#include
int bico(int n, int k){
int t, i ,c ;
if (k>n) t=n, n=k, k=t;
if (k<0 ) return 0 ;
if (k>(n-k)) k=n-k;
c=1;
for(i=0;i c*=(n-(k-(i+1))) , c/=(i+1);
return c ;
}
int main(int argc, char * argv[] ){
if(argc!=3) return -1;
int c;
c=bico(atoi(argv[1]) , atoi(argv[2]) ) ;
printf("bionomial %d\n", c);
}
d****n
发帖数: 1637
6
来自主题: Programming版 - 计算组合数C(m,n)
/*working with larger numbers but still die */
/**C(80, 20) is okay, which was not ok in previous version**/
#include
#include
#include
float
gammln (float xx)
//Returns the value ln[Ãxx)] for xx > 0.
{
//Internal arithmetic will be done in double precision, a nicety that
//you can omit if five-figure
//accuracy is good enough.
double x, y, tmp, ser;
static double cof[6] = { 76.18009172947146, -86.50532032941677,
24.01409824083091, -1.231739572450155,
... 阅读全帖
c*********t
发帖数: 340
7
你可以去读一些small sample inference的东西,一般来说Exact method的确是
conservative, 因为bionomial分布是discrete的,所以才会有mid p value这种东东。
fisher exact的经典适用情况就是有任何一个cell小于5
o****e
发帖数: 80
8
来自主题: Quant版 - old problems
pcasnik大侠的建议,俺终于整明白了,他老人家让我看到有意思的老题目收集一下连
接。
我一道道加把
1。bionomial distribution近似
http://www.mitbbs.com/article/Quant/31175297_0.html
这个题目,我只找到了 poisson 近似,when n big enough and p is small, lamda=
np, then (n,k)*p^k*(1-p)^(n-
k)--->lamda^k*exp(-lamda)/k!
可是这样还是心算不出来阿? 大虾们说说把
2. random walk
http://www.mitbbs.com/article_t/Quant/19184699.html
N**B
发帖数: 1190
9
来自主题: Statistics版 - bionomial extreme case
自己顶一下,
D******n
发帖数: 2836
10
来自主题: Statistics版 - bionomial extreme case
网上自己搜,一大堆。都是很纠结的。如果用Bayesian角度,就很简单直接。
s*r
发帖数: 2757
11
来自主题: Statistics版 - bionomial extreme case
这个到是boostrap没发弄.大师可以拿来作为证据了
n*****n
发帖数: 3123
12
(1-p)^(-r)做泰勒展开
注意要用到generalized bionomial coefficients
包子please
Y******Y
发帖数: 8753
13
来自主题: Statistics版 - 请教 正太分布和普耳松分布。
i think you can consider modeling the data using either zero-inflated
poisson or zero-inflated negative bionomial (which is an alternative of
poisson that can account for overdispersion)

site
NORMDIST(
(共0页)